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Elliptically polarized wave induced local growth of instability at an obliquely developed
inhomogeneity in a plasma

Rajarshi Bhattacharya, Soumen Mondal, Debjani Dutta, and B. Chakraborty
Department of Mathematics, Jadavpur University, Calcutta 700 032, India

~Received 26 August 1996; revised manuscript received 22 November 1996!

A strong elliptically polarized wave, incident obliquely on a plasma, consisting of singly charged ions and
free electrons, when obstructed by an inhomogeneous growth at a pointP ~say! of its path of propagation,
becomes unstable. When the characteristic length of variation of the inhomogeneity is of the order of microme-
ters, the wave energy is deposited completely in the vicinity ofP. Plasma characteristics such as the wave-
affected magnetic moment field, the wave growth factor, and the space charge separation wave of compression
and rarefaction are also determined. The behavior of the resulting expanding shock front and the other effects
cannot be considered by the field equations used here. Also the spin wave features~second-order effects! that
develop and the related dispersion relations are considered for an elliptically polarized wave and a longitudinal
wave.@S1063-651X~97!14703-1#

PACS number~s!: 52.35.2g, 52.40.2w
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I. INTRODUCTION

Consider a strong elliptically polarized wave~EPW! con-
sisting of singly charged ions and free electrons, in a plas
facing an inhomogeneity at a field pointP. The inhomoge-
neity is expressed as a finite gradient of the amplitude of
electric field of the wave atP, which is assumed to act pa
allel to theZ axis when the direction of wave propagation
in theZ-X plane and at an anglea with OX as in Fig. 1. The
gradient action is weak when the characteristic length
variation of the field amplitude is large compared to t
wavelength of the wave field. In that case the wave esca
distorted through the region, and may not remain elliptica
polarized. On the other hand, when the characteristic len
of variation of the amplitude is small~of the order of its own
wavelength, or even smaller!, say a few micrometers, fo
optical waves, the action of the instability from the inhom
geneity will be severe and the EPW will be destroyed, so t
the whole of the wave train energy will be deposited in t
neighborhood ofP. This instability will be studied in this
paper. We mention here that this growth is not of ponde
motive origin because that is an average effect along a
main of lengths of the order of one wavelength.

Here we obtain the local dispersion relation for the EP
at P, in terms of the amplitudesa and b and their partial
derivatives with respect toz. The wave vectorK is at an
anglea with OX and the plane of incidence is theX-Z plane
~Fig. 1!. The amplitudesa(z) andb(z) of the electric field of
the wave are slowly varying functions ofz. Derivative ofa
andb with respect toz are denoted bya8 andb8. We also
retaina9 andb9 ~derivative ofa8 andb8! because thea8 and
b8 terms may cancel out in some places. Botha8, b8,
anda9, b9 are regarded as constant parameters. Finallya8 is
replaced bya/ l , b8, b/ l , a9, a/r 2, andb9 by b/r 2 wherel is
the characteristic length of variation ofa andb andr is that
of a8 andb8. To eliminate the complications from steepe
descent in the profile of ‘‘a’’ and ‘‘ b’’, we also assume tha
l,r . This is a simple way to estimate the growth of t
inhomogeneity quantitatively, which destabilizes the wa
551063-651X/97/55~4!/4602~6!/$10.00
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The influence of the amplitude gradient from the Gauss
law for the electric displacement vector can be studied in
pendently of that from the other laws. So, to distinguish b
tween these influences, in the Gauss equation we replaca8,
b8, a9, andb9 by a18 , b18 , a19 , andb19 , respectively, write
a185a1/l1, b185b1/l1, replacea19 by a1/r 1

2 andb19 by b1/r 1
2,

and finally puta15a, b15b, but retainl 1 andr 1 as distinct
from l andr . This does not create any problem in the calc
lations and in drawing conclusions. The space charge w
is essentially of compressibility and rarefaction and excite
longitudinal acoustic wave that does not exist for incide
transverse waves in homogeneous plasma.

Due to incidence of strong circularly polarized wav
~CPW! on material targets the electrons are driven in circu
orbits generating~both dc and ac! fields of magnetic mo-
ment, also called the inverse Faraday effect~IFE!. Including
the relativistic variation of mass, for electron motion, the IF
was studied by Steiger and Woods@2# in unmagnetized
plasma. A nonrelativistic treatment of IFE by a microwa
radiation was given by Pomeau and Quemada@3# in a colli-
sionless plasma. Deschampset al. @4# observed this magnetic
field in plasma experimentally. In some problems of wav

FIG. 1. Shows the direction of propagation of an elliptica
polarized wave, the gradients of the amplitudes (a,b) of which act
parallel toOZ at P.
4602 © 1997 The American Physical Society



th
re

n
e

se

th

pl
t
m

e
g
a

io
u
b

ria
u
im
e
er
e
e
n

e
ua

e
el
nd

o
in

an
as
ts

n

e

ic

r
f the
res
ing
m-

ld,
ma

ions
-

nd
lity,

is

ity
-

e is
he
,

55 4603ELLIPTICALLY POLARIZED WAVE INDUCED LOCAL . . .
plasma interaction and wave-wave interaction including
resonant and parametric interactions in plasma, the non
tivistic dc part of the field is evaluated@5–8#. In the interac-
tion of intense short wave field pulses@9,10#, obliquely inci-
dent on a material target, the spatial gradient a
nonstationary character of the ponderomotive force can g
erate@11,12# very large transverse magnetic field~of the or-
der of 109 G! and a moderate axial magnetic field@13# ~0.5–
0.6 MG!. Some amplitude-dependent instability proces
are believed to generate the field in the coronal region@12# of
the field produced plasmas. In the far-coronal region,
long-wavelength approximationl@lD ~l is the wavelength
of the applied wave field andlD is the Debye wavelength! is
not valid. There the density steepening effect gives rise
filamentation@14#, the conditionsLN.l andLE.l are vio-
lated, and the space charge separation effect@11# is possible
whenLN,l,lD andLE,l,lD whereLN andLE are the
characteristic lengths of variation of density and the am
tude of the electric field, respectively. These features and
spin wave features are studied here using the magnetic
ment evolution equation@15#.

Magnetization in plasma is a direct instantaneous proc
of conversion of energy available in other forms into ma
netization energy. The permanent magnetization in a m
netic material below the Curie temperatureTC is explained
by the concepts of the spin angular momentum distribut
of electrons. The permanent magnetization of Earth, S
etc., which are made up of plasma, should be explained
the theory of permanent magnetization in magnetic mate
Then it should be remembered that plasmas do not req
the latent heat of phase transition and have no thermal l
of Curie temperatureTC of magnetization, because th
plasma collective behavior is not destroyed at high temp
ture but that of the other magnetic materials is destroy
The effects of induced electric dipole moments are includ
in the dielectric tensore~v,K! and the magnetic dipoles i
the magnetic permeability tensorm~v,K!. The theories of
their determination from the constitutive relations are ind
pendent of the derivation of the macroscopic Maxwell eq
tions.

The second- and higher-order elementsmi j of m depend
on the parameters of the plasma and the applied wave fi
and excited spin waves. As in solid state plasmas, the
mentsei j of e are associated with electrokinetic waves a
mi j of m with spin waves; so bothe andm should exist. Then
the collective effects allow the excitation of the two categ
ries of waves, and their study classically in media includ
plasmas.

Magnetization in a magnetic material is explained qu
tum mechanically by the action of spin waves. But their cl
sical study in plasma as second- and higher-order effec
permitted in some regions of wave frequencyv and wave
numberK, with the help of the magnetic moment evolutio
equation

dM

dt
52g„M03H…, where g5ueu/2m0c,

which is derived with the help of classical Newtonian m
chanics. The elements of themi j are calculated with the help
of this equation@15#, where the zero frequency magnet
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moment field is determined by Eq.~19! in terms of the pa-
rameters of the applied wave field and the medium.

So the elements ofmi j and ei j are of second and highe
order and are obtained as functions of the parameters o
wave field and the medium. Then, finally, spin wave featu
including the dispersion features are determined by feed
the phenomenological Maxwell equations of electrodyna
ics with the nonzero elements ofmi j andei j , and doing some
standard analysis.

II. FORMULATION OF THE PROBLEM

A. Basic equations and dispersion relation

The basic Maxwell equations of a Lorentz model for co
nonrelativistic, collision-free, unmagnetized electron plas
are

“3E52
1

C

]H

]t
, ~1!

“3H5
1

C

]E

]t
1
4p

C
J, ~2!

“•E54prc, ~3!

“•H50, ~4!

whererc5(b5e,iNbqb andJ5(b5e,iNbqbvb are the charge
and the current density, respectively. The electrons and
have chargeqe(52e) andqi(5e) per particle, number den
sitiesNe ,Ni , and velocitiesve , vi , respectively.

The EPW~Fig. 1! has the electric field vector

E5@a~z!cosu,b~z!csca sinu,2a~z!cota cosu# ~5!

whereu5~k•r2wt!5~kx cosa1kz sina2wt!, the a(z) and
b(z) field amplitudes are slowly varying functions ofz, and
thez-x plane is the plane of incidence. Ions remain static a
provide the background for macroscopic charge neutra
which is violated by the action of the inhomogeneity atP.
Taking divergence ofE, the space charge separation effect
obtained

“•E52a18~z!cota cosu54prc524pNe , ~6!

where rc ~the space charge density!52eN. The pressure
variation“p corresponding to the electron number dens
fluctuationN induced by the wave interaction with the inho
mogeneity in plasma atP is obtained from the adiabatic law
of compressibility, given by

“p5Cs
2
“rm5mCs

2
“N5

mCs
2

4pe
“~a18cota cosu!, ~7!

where Eq.~6! is used. Hererm is the perturbation in the
electron mass density, andCs is the velocity of sound in the
electron fluid. This space charge induced pressure forc
included as a force in addition to the applied force of t
electromagnetic~em! wave in the equation of motion, which
in the linearized approximation, reads

mN0v̇52“p2eN0E ~8!
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Solving for v̇ from this equation we obtain

v̇52
Cs
2

4pN0e
@ î~2a18K cota cosa sinu!

1 k̂~2a18K cosa sinu1a19cota cosu!#

2
e

m
@ î~a cosu!1 ĵb csca sinu

1 k̂~2a cota cosu!#,

whereî,ĵ ,k̂ are unit vectors along the directions of coordina
axesOX, OY, andOZ, respectively. The time integral o
this equation gives

vx
~1!5aeCH ns

2

XKl1
cota cosa cosu1sinuJ ,

~9!

vy
~1!5beC~2csca cosu!,

vz
~1!5aeCH ns

2

XKl1
cosa cosu1S ns

2

XK2r 1
221D cota sinuJ ,

where ae5ea/mvc, be5eb/mvc, ns5KCs/v, X5v p
2/

v2, v p
254pN0e

2/m, anda85a/ l 1 , a95a/r 1
2.

So ae ,be are dimensionless parameters~amplitude-like!
of the wave field andns is a refractive indexlike paramete

SinceJ52N0ev, the Maxwell equations in the linearize
approximation give

“~“•E!2¹
•

2E1
1

C2 Ë52
4p

C2 J̇5
4pN0e

C2 v̇. ~10!

Solving Eq.~10! for finding the locally valid dispersion re
lations generated by the action of the inhomogeneity on
EPW, we obtain

vx
~2!5

aeC

X H S 12n21
n2

K2r 2D sinu1
2n2

Kl
sina cosu

1
n2

Kl 1
cota cosa cosuJ ,

vy
~2!5

beC

X H 2S 12n21
n2

K2r 2D csca cosu2
2n2

Kl
sinuJ ,

vz
~2!5

aeC

X H 2S 12n21
n2

K2r 2D cota sinu2
2n2

Kl
cosa

3cosu1
n2

Kl 1
cosa cosu1

n2

K2r 1
2 cota sinuJ , ~11!

wheren5[KC/v] is the plasma refractive index. The ter
a18 effectively appears in the two components in the plane
incidence anda8 appears in all three components. To obta
the dispersion relation, it is better to equate the compon
of velocity from Eqs.~9! and~11!, after transforming them a
P into components parallel to the wave vectorK , denoted by
the subscript i and having the direction cosine
~cosa,0,sina!, perpendicular toK in the plane of incidence
e

f

ts

denoted by the subscript'2 and having the direction cosine
~2sina,0,cosa!, and perpendicular to the plane of incidenc
denoted by the subscript'1 with direction cosines~0,1,0!
which coincide with they direction. Thus

v i5vxcosa1vzsina,

v'1
5vy ,

v'2
52vxsina1vzcosa. ~12!

B. Local dispersion relations

Using Eq.~12!, transformation of Eqs.~9! and~11! to the
new coordinate system generates equations that can be
ten as

Ai
1cosu5Ai

2sinu,

A'1

1 cosu5A'1

2 sinu,

A'2

1 cosu5A'2

2 sinu.

Eliminating u from these relations we obtain two local di
persion relations. One of these is for the coupled longitudi
wave

S 12n22X1
n2

K2r 2D52
2n2r 1

2

l l 1
, ~13!

and the other for the transverse waves is

S 12n22X1
n2

K2r 2
2

n2

K2r 1
2D S 12n22X1

n2

K2r 2D
52

4n4

K2l 2
sin2a, ~14!

where for simplification we have used the fact thatn2@n s
2.

The dispersion relation for the longitudinal wave, valid
the neighborhood of the pointP, can be written as

v22vp
21

C2

r 2
5~122d2!K2c2, ~15!

whered 25r 1
2/ l l 1 is a dimensionless parameter. It gives co

plex values for v2 because the dimensionless quant
2d 2.1 for slow variation of the amplitudes without chang
of curvature. To avoid the complications of steep descen
P we therefore assumer 1. l 1 . For astrophysical plasmas
r ,r 1 ,l ,l 1 are large distances, sometimes even of the orde
kilometers, so when 2d 2.1, the wave cannot propagate b
yondP.

There are two cutoff frequencies of the transverse wav
vC1

andvC2
; these are given by

vC1
2 5vp

22
C2

r 2
1
C2

r 1
2 , ~16!

vC2
2 5vp

22
C2

r 2
. ~17!
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Evidently vC1
.vC2

, and sincevC2
,vp , the wave cannot

penetrate up to the regions it can in the absence of the
stacle atP. In space plasmasvC1

andvC2
are slightly dif-

ferent fromvp .
In laser induced plasmas,r is of the order of a few mi-

crometers andvp'1015/sec; soC/r is larger thanvp , and
instability will set in nearP. WhenC/r andC/r 1 are small
compared to the wave frequencyv, the dispersion relation
~14! becomes

~v22K2C22vp
2!252

4K2C4

l 2v4 sin2a. ~18!

The roots are imaginary even forv2.v c
2, so instability will

set in.

C. Zero harmonic induced magnetization

The formula for the magnetic moment, per unit volume,
a point r at time t, is

M5
1

2C
~j3 j !52

eN0
2C

~j3v!, ~19!

wherej is the displacement of the charged particles andJ is
the current density. For the wave field~5!, integrating Eq.
~12! and using Eq.~19!, we obtain the component of the d
~zero harmonic! magnetic moment density atP along the
three orthogonal directions specified after Eq.~11!,

M i
05

aebeNoe

2v H S 12
ns
2

XK2r 1
2D cot2a11J . ~20!

M'1

0 5
ae
2eN0
2v H ns

2

XKl1
csc2a cosaJ , ~21!

M'2

0 5
aebeeN0

2v H ns
2

XK2r 1
2 cotaJ . ~22!

Evidently, this is a primary source of generation of the
magnetic moment and there will be both axial and lateral
magnetizations. In the tube geometry, this is a prim
source of generation of both poloidal and toroidal dc fiel
The dispersion relations indicate the growth of noncollisio
instability due to the presence of the inhomogeneity atP.
This will amplify the magnetic field, and, within times of th
order of the period of the second harmonic of the appl
field, instability will set in, making further study by thi
theory invalid. Hence, for weakly but continuously varyin
layers parallel to theZX plane, the elliptically polarized
wave can excite axial~poloidal! as well as radial~toroidal!
dc magnetization. This action of the inhomogeneity contr
utes to the noncollisional dissipation of energy. Specifica
for a wave of high intensity and long wavelength, proceed
towards the coronal region, this noncollisional dissipation
the dc magnetic moment is dominant.
b-

t

c
c
y
.
l

d

-
,
g
f

D. The second order magnetic permeability

Using Eq.~1! the components of the dispersive magne
field Hx , Hy , and Hz are calculated and using a relatio
similar to Eq.~12! for H we obtain

H i50,

H'15
a

v S sin u

l 1
1K csca cosu D , ~23!

H'2
5
Kb

v
csca sinu.

Equations~20!–~23! and the relation

dM

dt
52g~M03H! ~24!

determine the components of the magnetic moment den
M along the three local orthogonal directions atP.

M i52
gae

2beN0C
2m

2v2

ns
2

X
cotaF S csc2al 1

2
1

K2r 1
2l 1

D
3cosu2

1

K2r 2
csca sinuG , ~25!

M'1
52

gaebe
2C2N0mk

2v2

3H S ns
2

XK2r 1
221D cot2a11J csca cosu, ~26!

M'2
52

gae
2beC

2N0m

2v2 H S ns
2

XK2r 1
221D cot2a11J

3S cosul 1 2K csca sinu D . ~27!

Also, the tensor relations

B5m:H5H14pM

give

m1252
4pgae

2beC
2N0m

2aKv

ns
2

Xl1
S cot2a2

cosa

K2r 1
2D , ~28!

m1352
4pgae

2beC
2N0m

2vb

ns
2

XK H cosa csc2a

r 1
2

1
1

l 2 S cot2a2
cosa

K2r 1
2D J sina ~29!

m22512
4pgaebe

2C2N0m

2av

3H S ns
2

XK2r 1
221D cot2a11J csca, ~30!
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m235
4pgae

2beC
2N0m

2Kl 1bv H S ns
2

XK2r 1
221D cot2a11J ,

~31!

m3252
4pgae

2beC
2N0m

2aKv l 1
H S ns

2

XK2r 1
221D cot2a11J sina,

~32!

m33512
4pgae

2beC
2N0m

2Kbv F21

Kl 1
2 1H S ns

2

XK2r 1
221D

3cot2a11JK cscaGsina, ~33!

m115m215m3150.

E. The electrical permittivity tensor

SinceEi50, E'1
5b csca sinu andE'2

52a csca cosu,
we find that

e125
a

b

ns
2

Kl 1
cosa, ~34!

e135
ns
2

K2r 1
2 cosa, ~35!

e225~12X!, ~36!

e335~12X!1
ns
2

K2r 1
2 , ~37!

e115e215e315e235e3250.

The Ampere-Maxwell law for the magnetoelectric inducti
and the relationj52neu, whereu̇52eE/m, determines the
elements ofei j in the linearized approximation, independe
of the amplitudes ‘‘a’’ and ‘‘ b’’ of the electric field.

F. Calculation of local spin wave dispersion characteristics

The obliquely incident em wave spoiled by the inhom
geneity makes the magnetic permeability a tensor in the
ond approximation. Hence, in the plasma medium the s
wave ~essentially a transverse wave! is studied by the Max-
well equations

“3E2
m:

C

]H

]t
, “•D50,

“3H5
e:

C

]E

]t
, “•B50.

Taking the Curl of the first equation, we obtain

“~“•E!2¹2E52m:eË.

Hence,
t

-
c-
in

¹23F 0
E'1

E'2

G5
1

C2 3F 00
0

m12e22
m12e22
m32e22

m13e33
m23e33
m33e33

GF 0

Ë'1

Ë'2

G
~38!

and the dispersion relations are

K2C2

v2 5e22S m222
m13m12

m23
D ~39!

and
K2C2

v2 5e33S m332
m13m32

m12
D . ~40!

III. OUTPUTS FROM A LONGITUDINAL WAVE

For a longitudinal wave

E5$a~z!cosa,0,a~z!sina%eiu; ~41!

and using the same basic equations as before, the com
nents of velocity, obtained from the equation of motion, a

vx
~1!5

ns
2aeCs

XKl1
sina cosaeiu2 iaeCsS 11

ns
2

X D cosaeiu,
~42!

vy
~1!50,

vz
~1!5

ns
2aeCs

XKl1
~11sin2a!2 iaeCsS ns

2

XK2r 1
2 1

ns
2

X
11D

3sinaeiu ~43!

and those obtained from the Maxwell equations are

vx
~2!52

aec

X S i n2

K2r 2
cosa2

n2

Kl
sina cosa1 i cosa Deiu,

~44!

vy
~2!50,

vz
~2!52

aeC

X S n2Kl cos2a1 isina Deiu. ~45!

Using the same procedure, thei and' components ofv ~1!

andv ~2! are calculated; the dispersion relation is then

n2

K2r 1
2 cos

2a521, ~46!

where the conditionCs!C has been used. The cutoff fre
quency for the inhomogeneity-induced transverse wave i

v25
Cs

C S vp
22

C2

r 1
2 D cos2a. ~47!
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Using Eq.~19! the magnetic moment is found to be alon
the'1 direction ~y axis!,

M'1
5
4pN0e

2Cv Fns2ae
2Cs

2

XKl1
H S ns

2

XK2r 1
2 1

ns
2

X
11D

2S 11
ns
2

X D ~11sin2a!J G . ~48!

And M i50, M'2
50 also, asH i andH'2

both are zero, the
excitation of the spin waves using equation~24! is not pos-
sible in this case@as the right hand side of Eq.~24! is zero#.
tta

et

B.

J

an
IV. CONCLUSIONS

Spin waves are excited when a transverse, elliptically
larized wave comes in contact with a plasma inhomogene
which is represented by the gradient of the wave amplitu
at an angle with the direction of the wave path. The nonz
elements of the tensor form of the magnetic permeability
determined here analytically. The general dispersion re
tions for transverse and longitudinal propagating waves,
two specific dispersion relations for the spin wave propa
tion for the transverse wave are obtained. Situations
found to be different for incident transverse and longitudin
waves. In the transverse case, spin wave excitations are
sible, but for the longitudinal wave the spin wave excitati
is not possible because (M03H) vanishes.
ou,

,

B.

e
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